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Abstract. Based on the Maslov complex germ theory. a method of constructing the quasi- 
classical spectral series for the D i m  operator is proposed. The case when the corresponding 
relativistic Hamiltonian system is non-integrable and it admits a family of invariant wo- 
dimensional stable Lagrangian tori containing the focal points is considered. The resulting 
quantirafion conditions for the above family generalize the Bohr-Sommerfeld-Maslov conditions 
and include new additional characteristics. The quasi-classical asymptotics obtained are regular 
over the full classically allowed domain. They also form an asymptotically complete and 
onhonormal set. Examples which use the proposed technique of the quasi-classical quantization 
are analysed. 

1. Introductlon 

This paper is devoted to the problem of asymptotics (quasi-classical) quantization of non- 
integrable systems in the region of their regular motion [I]. In this case we failed to construct 
a family of invariant n-dimensional Lagrangian tori in a 2n-dimensional phase space. (In 
mathematical literature the corresponding torus is termed isotropic.) Nevertheless, it often 
occurs that a non-integrable Lagrangian system possesses tori with a smaller dimension 
than that of the initial configuration space. Such a situation is typical of systems which 
possess a certain set of conserved quantities-the motion integrals [2]. Examples include 
a relativistic electron in the inhomogeneous magnetic field of an accelerator (with weak 
focusing), a hydrogen atom in a strong magnetic field (the Zeeman effect). etc. 

A rigorous mathematical theory of the quasi-classical quantization of invariant 
incompletedimensional Lagrangian tori and constructing quasi-classical asymptotics (the 
so-called complex germ theory) was developed in general outline in [3,4]. The basic 
idea of this theory is to reduce the initial problem of constructing asymptotic solutions 
to the study of geometric objects of the classical mechanics-the family of invariant 
Lagrangian tori with complex germ. From this family a discrete subfamily which generates 
a corresponding spectral series-a set of quasi-classical energy levels and corresponding 
to them quasi-classical eigenfunctions-is selected according to the quantization conditions 
(which together with the Maslov index contain new characteristics). Eigenfunctions form 
an asymptotically complete orthonormal set, and they are localized in a neighbourhood of 
a classically allowed region. In [5,6] it was noted that the existence of a complex germ is 
equivalent to the orbit stability of the torus. 

0305-4470/94/155273+34$19.50 @ 1994 IOP Publishing Ltd 5273 



5274 V G Bagrov et a1 

In this paper the Maslov complex germ theory is applied to construct quasi-classical 
spectral series of the Dirac operator for the case when the relativistic classical system 
permits a family of invariant two-dimensional Lagrangian tori. (The Dirac operator spectral 
series corresponding to the motion of a relativistic electron along a closed stable orbit were 
obtained in [7].) Neglecting some particular technical details we shall qualitatively describe 
the main stages of the consbuction. 

The following spectral problem is considered 

( &  - E ) ~ E  = 0 (1.1) 

where 

is the Weyl-ordered Dirac operator in an external electromagnetic field, E is the spectral 
parameter depending on f i ,  and q = (ql ,q2. q3) are the coordinates (curvilinear-in the general 
case) of the configuration space 4. Let the main symbol of the operator HD be denoted 
H ( p ,  q)  = Ho(p ,  q, 0). The matrix H ( p ,  q) possesses two doubly degenerate eigenvalues 
h(*)(p,  q), one on which q) coincides with the classical Hamiltonian function of a 
relativistic electron. The corresponding classical motion is described by the Hamiltonian 
system 

0 0 

The case of a partially integrable system (1.2) allowing a family of two-dimensional 
invariant Lagrangian tori is considered. This situation is typical when an electron moves in 
the fields with an axial symmetry. 

Namely, let the variable qs = (o(mod2x) be cyclic. Then system (1.2) has the two 
integrals of motion: the integrals of energy EO = h(+)(p. q )  and momentum I, = pr. It 
is supposed that in a certain region of varying parameters o = (Eo, 1,) in the phase space 
R: x R : ,  system (1.2) permits a smooth two-parametric family of invariant two-dimensional 
Lagrangian tori A2(o) = [ (p .  q) : p = p(r ,  o), q = q(r, 0)) lying on a joint surface of 
the energy level Eo and the momentum IO. The real coordinates T = (r , ,  ~ 2 )  on A2(w) are 
chosen in such a way that rl = t .  It is also assumed that A2(o) is defined by the equations 
p = p ( r , w ) ,  q = q ( r , w )  by means of only one set r ER:. 

According to the general theory of the complex germ [3,4], to construct the asymptotics 
which correspond to the invariant Lagrangian manifold A*@) it is not sufficient to know 
only the manifold A2(o). This makes up one of the principal distinctions from the case of the 
quasi-classical Maslov asymptotics with real phases [8,9] to which the invariant Lagrangian 
tori of complete dimension (coinciding with that of configuration space) correspond, It 
is necessary to construct a new geomehic object, a complex germ r3(A2(o)), which 
is responsible for the complex part of the asymptotic phase. In essence, r3(Az(o) )  is 
given by a set of three linearly independent vector-functions ax(r), k = 1,2,3, being the 
solutions of the linear Hamiltonian system (which is derived from (1.2) by linearization in 
a neighbourhood of the manifold A2(o)) and satisfying the conditions of Lagrangianity and 
dissipativity. As a result, we obtain a geometric object [A2(w), r3(A2(o))]-a family of 
Lagrangian manifolds A2(w) with complex germ r3(A2(w)).  
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The following basic point in constructing the quasi-classical asymptotics of (1.1) 
corresponding to the family Az(o)  is due to the presence on h?((o) of singular (focal) points 
with respect to projection onto the configuration space. It is well known that in the standard 
WKB method [IO] the presence of focal points turns out to be an obstacle to construction 
of a unified regular asymptotic solution (which is valid over the full configuration space, 
including the focal points). Within the framework of complex germ theory this problem 
is solved by means of constructing a canonical operator with complex phase which, in 
fact, does determine the rule of matching the local asymptotics. The original version 
of this operator was proposed by Maslov [31. Modification of the general construction 
of the canonical operator with complex phase in the case of incompletedimensional tori 
(manifolds) containing focal points was made in [5,6]. 

As applied to our case, the procedure for constructing a regular asymptotic is as follows. 
The manifold A’(@) is covered by a set of neighbourhoods C2j forming a canonical atlas 
on it. Let rg(C2j)  be a part of the configuration space onto which the neighbourhood C2j is 
projected. For each domain nq(R,), a corresponding asymptotic (mod O@”’)) solution of 
(1.1) is found 

(& - E ) q i ( q , f i )  = o(fi39. (1.3) 
0 ,  

This approximation is sufficient to define the leading term 0; of the local asymptotic 
@. On the basis of the functions Yi, by the construction of the canonical operator 
Khi(+ a multi-valued function Q E  is built up on the configuration space. To avoid multi- 
valuedness. one should impose additional conditions leading to the quantization conditions 
of the family [A2(@), r3(A2(o))l. Unlike the Lagrangian tori of complete dimension, 
which are quantized by the Bohr-Sommerfeld-Maslov rule [7], the above conditions contain 
additional characteristics due to the complex germ r3(A2((o)) (see [5,6]). 

As a result, 6om the continuous sequence of values of the spectral parameter E one 
selects a discrete set of energy levels E N . { @ ) ,  where N, I @ )  is a set of quantum numbers 
defined as 

0 .  

0 

lim hl(h) = 10 
I-rO (1.4) 

Equations (1.4) point out the correspondence of this quasi-classical spectral series to the 
classical motion with the energy EO and the momentum IO. 

The asymptotic eigenfunctions  YE^,, are localized in some neighbourhood of the 
projection of A2(o) onto iR; and with the accuracy to O@’/’) they form an asymptotically 
complete orthonormal set of states 

where + denotes Hermitian conjugation. 
The sequence of numbers E N , , ( f i )  and that of the functions q ~ ~ , ,  constructed in this 

way are a quasi-classical spectral series of the Dirac operator & to which in the limit 
fi -+ 0, the family of invariant Lagrangian ton A2(o) correspond. 

To complete the picture, it is worth noting that the problem of quasi-classical 
approximation for the Dirac operator in the case when the corresponding relativistic 
flamiltonian system permits a family of complete-dimensional Lagrangian tori, was soIved 

0 
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in [9] by constructing the Maslov canonical operator with real phase. The same problem 
was dealt with in the work by Leray 11 I]  but considered from the viewpoint of Lagrangian 
analysis. The method of ‘gauge-invariant’ construction of the quasi-classical eigenvalues 
and eigenfunctions for matrix differential operators proposed recently by Littlejohn and 
Flynn [12,13] also deserves attention. Here, contrary to the traditional approach, the 
construction is carried out in the phase space with specially chosen gauge-invariant 
coordinates being, however, not canonical. Note that the quasi-classical quantization 
of closed stable orbit are also investigated in mathematical literature [14-171 (see also 
discussions in [2&221). 

The paper is organized in such a way as to make it self-contained as much as possible. 
In sections 2 and 3 all the necessary facts from the complex germ theory are given. In 
section 4 these results are illustrated by the example of a Hamiltonian system allowing the 
family of non-complete Lagrangian tori A2(w). In section 5 for A’(@) a corresponding 
spectral series of the Duac operator is built up. The results obtained are applied to specific 
physical systems in section 6. Part of the necessary material is taken into the appendices. 

V G Bagrov et ai 

2. Complex germ on the family of two-dimensional Lagrangian manifolds 

Let A2 be a compact two-dimensional Lagrangian manifold which is invariant with respect 
to Hamiltonian system (1.2) and lying on a surface energy level of classical Hamilton 
function h+(p .  q) .  A + l p  = EO. Let I denote an increasing subsequence of the set (1,2,3), 
and f an ordered subsequence of the same set supplementing I to (1,2,3). The ordered 
set y = (4,. p i )  of the phase space coordinates ( p , q )  corresponds to the set ( I ,  f); e.g. if 
I = { Z ,  3) and f = (1) then y = (PI ,  q2,43).  and when I = (1.2.3) and f = (+I,  we are 
likely to have y = q = (q1,qZ. 43). Let G I  denote the domain on Az which is projected 
onto the coordinate plane (q,, p i )  smoothly and in a single-valued manner. In other words, 
in the region G I  the following condition is valid 

Since Az is a compact manifold, the following statement holds true: the manifold A* may 
be covered by a finite set of neighbourhoods GlW satisfying condition (2.1). Such a set of 
neighbourhoods { Q I ~ ]  forms a canonical atlas on A’ (see also 131). 

For a given ordered set of coordinates y = (q,, p i ) .  the ordered set of conjugate 
momenta is p y  = ( P I ,  - q j ) .  Consequently, for the above examples we shall have 
p y  = (-Q, p z ,  p3)  and p y  = (PI, pz ,  p3) ,  respectively. The transformation from the 
coordinates ( p ,  q )  to ( p y .  y) is canonical and determined by the symplectic (6 x 6)-matrix 

A -B 
‘ I = ( ,  A ) ’  

Here, A and B are the diagonal (3 x 3)matrices of the form A,b = So&,, Bob = 8,j8,,6, 
where 
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The canonical transformations leave the Hamiltonian system invariant, so that for (1.2) we 
have 

(2.3) -(t) y = Z ( t )  p y  = - A  P P? 

where i ‘+’(py,  y) is the function A(t’(p, q)  expressed in the ( p y ,  y) coordinates. (Here and 
below a dotted term implies a derivative with respect to T, .) 

Let a six-component vector-function 

be a solution of tfie system in variations 

(2.4) 

which is the result of the linearization of Hamiltonian system (1.2) in a neighbourhood of 
A* = { p  = p ( r ) , q  = q(r),r E R:). (By the function A2)(7) is meant the function 
Abf;)(p, q)  taken at p = p ( 7 )  and q = q ( r ) . )  The same treatment of canonical system (2.3) 
leads to the system in variations of the form 

(2.5) 

Equations (2.4) and (2.5) are the linear Hamiltonian systems, and the symplectic 
transformation Z(T) = GlO(7) is canonical for them. Whence it follows that to each 
solution of (2.4) 

there is a solution of (2.5) 

where 

i ( 7 )  = BZ(r) + AW(7) = (;E;). 
In addition, in view of the matrix GI being symplectic, for any two solutions of (2.5) there 
is an identity 

{a, b )  = {a ,  b )  (2.7) 

where [ ) imply the anti-symmetric inner product. 
Let us define the notion of a complex germ on the Lagrangian manifold A’. The 

following condition will be assumed to be fulfilled: equation (2.4) permits a set of three 
smooth with respect to 7 = (TI, 72)  E IR:, linearly independent solutions a d s ) ,  k = 1 ,2 ,3  
such that: 
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(a) The first two of them, al(~), az(?). define the basis for the plane tangent to the 
manifold A 2  at the point r E A’ and are of the form 

(Here and below the derivative with respect to rz is denoted by prime.) 
(b)  The solution 

is a complex and bounded, with respect to the variables ? = (T,, TZ), vector function 
satisfying the condition 

M?), &(?)I = 2i (2.9) 

where * denotes the complex conjugation. 
(c )  All three solutions a k ( ~ )  are skew-normal in pairs to each other 

l a d r ) , d r ) )  =O. (2.10) 

At each point ? E AZ the complex plane r3(?) spanned by the vectors ~ K ( T )  forms a 
complex germ. In view of (2.10) this plane is a Lagrangian plane, and vectors Q ( T )  form 
the basis for it. The family of planes {r3(?) ,  r E Rf]  define the complex germ r3 (hZ)  on 
the invariant Lagrangian manifold A’. 

Note 1. Vector 4 ( r )  introduced above is not, in the general case, a single-valued function 
on A2? since at different ? and T’ determining the same point on A2, we generally have 
q(5 )  # a3(r’). Nevertheless, assuming a certain inaccuracy, we call {r3(s) ,  T E Wf} a 
complex germ on A’. 

It should be mentioned now that since GI  is a symplectic transformation, it hansfers 
the Lagrangian plane into itself, then in defining the complex germ r3 (Az )  instead of 
the solutions ak(?) of (2.4) satisfying conditions (2.8)<2.10), we might take the linear- 
independent solutions &(?) = G,ak(?) of (2.5) which form a new basis for the germ 
r3(Az) .  The vectors Cil (T) and &(?) tangent to the manifold A’ have, according to (2.6) 
the form 

(2.11) 

and, in turn, from conditions (2.9), (2.10) and identity (2.7) it follows that 

* 
[Z~(T),Z~(T)] = 0 [ Z ~ ( T ) , & . ( T ) )  = 2i. (2.12) 

Hereinafter by the complex germ in the neighbourhood QJ will be meant the set of vector 
&(?) defined above. 

The conditions stated in this section determine a geometric object [A2(@), r3(Az)]-the 
Lagrangian manifold with ,complex germ-which plays a key role’ in constructing quasi- 
classical asymptotics with complex phase 141. 



Quasi-classical spectral series for the Dirac operator 5279 

3. Functions on a family of Lagrangian manifolds with complex germ 

Let S2, c A* be some neighbourhood with the local coordinates y = ( q , , p i ) ,  Py = 
( P I ,  - q j )  and the following objects be introduced. We shall buiId up square (3 x 3)- 
matrices from the components of the complex germ vectors &(r) in the neighbourhood 
a1 

= (pY(7) ,  4 ( 7 ) ,  @(r))  &c) = (Y(t), ~ ' ( 7 ) .  i ( r ) ) .  (3.1) 

Then, as follows from condition (2.1), in the region S2, the matrix e ( r )  is non-singular. In 
this way, one can define the symmetric matrix Q = 6e-I with the positively semi-defined 
imaginary part 161: Im Q(r)  0. 

Introduce a set of functions r (y)  = (r,(y), rz(y)] obeying the equations 

(j(r),ayrj)l = 1 ( j ( r ) ,  ayn)l = 0. (3.2) 

(Here and below the brackets (., .) imply a scalar product in R3.) The existence of such a 
set, at least locally, follows from condition (2.1). 

r=rW r=r(y) 

By Ay and Ai ,  denote the operators 

Ay = y - Y(7) Ab? = -Ciay I -py(r). (3.3) 
z=MIIP 

In the neighbourhood S2, introduce a complex action (complex phase) 

(3.4) 

where E = Eo+hEl +Om*), A(+)[ht = EO and the integration in (3.4) is carried out along 
an arbitrary path on A* with the end at the point r E S2,. 

Relate operators to the vectors &(r) of the complex germ as follows 

1 
dl = (y(r), AM - (~jy(c), AY) 

& = (y ' ( r ) ,  ab,) - (p ; ( r ) ,  AY)  

& = -((z(r). .by) - W r ) .  AY)) 

(3.5) 
d% 

:+ 1 * - --((i(r), aiy) - c h 7 ~  AY)). -d% 
In view of (2.123, the following commutation relations hold 

[&(r),&(r)] = 0 [&(r), d:(r)] = 1 k, 1 = 1,2,3. (3.6) 

Define the function j ( c )  = detC(r). Since the condition f ( r )  # 0 is fulfilled in the 
neighbourhood S2,, one can introduce the function 



5280 

Using the creation operator 2: one can consmct a set of functions of the form 

V G Bagrov er a1 

1 2+ 
Iv,r(r)) = -(a3)”101 r ( y ) ) .  (3.8) .J;i 

Using (3.4) and (3.6) it is not difficult to show that 

6 , l v ,  r ( y ) )  = o & I U ,  r(y)) = 0. (3.9) 

Finally, associate the Hamiltonian function i (+) (pY,  y) to the Weyl-ordered quadratic 
operator in a mixed y-representation 

(3.10) 

Then, the functions (3.8) form a set of exact solutions of the Schrodinger equation with 
Hamiltonian (3.10) 

:(+I 
(-if&, + A. - E)lv, r ( y ) )  = 0. (3.1 1) 

As one can see below the functions Iv, r(y)) are the basis for construction of the Maslov 
canonical operator with complex phase. 

4. Family of invariant two-dimensional Lagrangian tori (special case) 

The results of the two previous sections will be illush.ated by an example of a partially 
integrable Hamiltonian system with an axial symmetry allowing a family of invariant two- 
dimensional Lagrangian ton A2(o), o = (EO, l o ) .  

Let the Hamiltonian function on the phase space R; x have the form 

A(”(p. 4)  =  PI, P$ P V ,  41. q:). (4.1) 

In view of the variable q3 = q(mod 2n) being cyclic, Hamiltonian system (1.2) permits the 
two integrals of motion 

PV = Io A(+)(Pl. PZ’, l0,qI.q;) = Eo. (4.2) 

For given values of the energy EO and the momentum IO the set of equations (4.2) govern 
some joint surface M(E0,  lo ) .  Let the surface M ( E 0 , I o )  be connected and compact in 
some region of the varying parameters Eo and la .  We shall consider its intersection with 
the coordinate plane 7 = [ ( p , q )  : p2 = q2 = 0). Then, as follows from ( U ) ,  the 
intersection M(E0 ,  l o )  n 7 is the invariant Lagrangian manifold A2(Eo, l o )  of the form 

(4.3) A ~ ( E ~ ,  io) = s’(io) x A ’ ( E ~ , Z ~  

A’(Eo,ZO) = l ( p , q ) :  A(t)(~~,O,Zo,q~.O) = Eo1 

S’(l0) = { ( p p  q) : PV = 10, U, E LO, Znl). 

where 

(4.4) 

(4.5) 
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Owing to the assumption of M(Eo,  Io) being compact the curve A’(E0,  IO) is closed, whence 
it follows that A*(Eo, l o )  forms a family of invariant two-dimensional Lagrangian tori. 

The closed curve A1(Eo, Zo) obeys the pair of canonical equations 

P I  = -iF)(P1 r 41 r 10) 41 = ::)(PI, 41 I Io) (4.6) 

where  PI, 4 1 ,  Io) = h(+)(pt ,  0, 10, q1,O). In the phase plane ( p i ,  ql), equa- 
tions (4.6) describe a one-dimensional finite motion on the energy level EO. By 
{pl(rl,w),q~(r~,w),w(Eo, IO)} denote a periodic (with respect to q )  solution of (4.6) 
with period TI given by 

(4.7) 

where R+(w) are the roots of the equation ig)(q~, EO. ZO) = 0, ,$?(q~, EO, 10) = 

iE’(4i7 PI (41 ,  El I Io), Io), pi (41, Eo, lo) we obtain from the equation i ( + ) ( p l ,  41, IO) = 
Eo. 

As far as the angular variable (p is concerned, there is the following formula for it with 
allowance for TI-periodicity of the functions p l ( q ,  w )  and ql(r1. w ) :  

p ( r , w ) = L ,  h ~ ) ( t , E o , I o ) d t + r ~ = B l r ~  +B(sI,o)+.cz (4.8) 
It 0 

where rz(mod2n). 

and B(rl, w )  is the periodic function with period F .  The point marks the ‘time origin’ 
for Hamiltonian system (4.6). 

Now we shall find the three vectors uk(r) forming the complex germ on the family 
Az(w) (4.3)-(4.3). The first two of them make up a symplectic basis for the tangent space 
of the manifold Az(w) and, according to (U), are as follows (for the sake of simplicity 
we shall omit the dependence on the parameters EO and l o ,  wherever it does not cause 
confusion): 

(4.9) 

The third vector up(7), which is skew-normal to the first two, will be described as 

a z ( n )  = (0. w(rd ,  0,0, z(s) ,  o f .  (4.10) 

Then, substituting (4.10) into (2.4) we obtain the following system of equations for a pair 
of complex functions w ( q )  and z(rl) 

(4.1 1) 
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Additionally, from (2.9) it follows that 

V G Bagmv et a1 

Im(wz) = I .  (4.12) 

Equation (4.11) is the linear Hamiltonian system with TI-periodic, with respect to TI ,  
coefficients. 

The Floquet solution is chosen as a solution of this equation, i.e. 

(4.13) 

In this case, the condition of reality of the Floquet characteristic index S21 follows from 
(4.12). In its turn, the condition Im QI = 0 ensures that the vector-function (4.10) is limited 
in the entire region of varying the parameter T I  E R'. Thus, the vectors (4.9) together with 
the vector (4.10) satisfying (4.12) and (4.13) form the complex germ r3(A2(@)) .  

It should be noted that the number S21, according to (4.13) is, generally speaking, 
determined with an accuracy to 

2lr 
-k .  k E Z. 
TI 

Subsequently, we shall assume that the number 521 was chosen in such a way that 

argZ(71 +T~)=argZ(Ti)+niTr.  (4.14) 

Now we shall proceed to constructing the canonical atlas on the manifold (4.3) and a 
set of functions (3.8) corresponding to it. It should be reminded that a point r ( T )  E Az 
is called non-singular, if rank )Iaq/arJI = 2 at the point. On the other hand, a point r ( r )  
is called singular (focal). Similarly, if a neighbourhood S2 c A2 consists of non-singular 
points, then such a neighbourhood is called non-singular. Otherwise, we have a singular 
(focal) one. 

In the case of the family A'@) of the type (4.3X4.5) the set of all the singular points 
C C A2(@) at which the rank of the matrix 

is less than two consists of the points C = ( r ( z )  E A'(w), T = (r;, 5 2 )  U ( r f ,  T Z ) ,  r2 E 
[O, h]) where r: are zeros of the function 41(~1), i.e. ql(r:) = R+. The projection n,(C) 
of these points onto the configuration space R: forms the caustic r q ( C )  = S i  U Si made up 
of the two circles S i  = {(q), q1 = R+, q2 = 0, p E [O, 2x1). The closed curve A 1 ( E o , l o )  
lying on the coordinate plane (PI ,  41) is oriented counterclockwise and, for definiteness 
sake, assume that ;I < T: < 5; < ; I +  T I ,  R- i R+.  Cover the curve A ' ( E ~ ,  20) with 
the four neighbourhoods b, j = 1,4  as shown in figure 1. Then the canonical atlas on 
A2(w) may be made up from four neighbourhoods of the type S2j = 5 x [rz], 52 E IO, 2x1. 
With such a choice, the neighbourhoods S2,. 523 are non-singular, and the neighbourhoods 
S22. Q4 are singular. The ordered set of the phase space coordinates y = (q,, p i ) ,  where 
I = 12.31, correspond to the neighbourhoods Qj ,  j = 2.4, since in this case 

- 
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Figure 1. The canonical atlas on A l ( E o ,  lo) 

Now we shall give the explicit expressions for functions (3.8). Having omitted simple 
but rather cumbersome calculations we write out the final results. For the functions 
I Y ,  r j ( y ) )  corresponding to the non-singular neighbourhoods Sq,, j = 1,3 we obtain 

where the functions q )  are of the form 

(4.16) 

Here H&) are the Hermite polynomials. The integral in (4.15) is taken along a path on 
A'(Eo,  lo) oriented counterclockwise with the origin in the point :I E VI and the end in the 
point rl E 5,  j = 1,3. The function r:(ql) is the solution of the equation qI(q'(ql)) = 41 
in the non-singular neighbourhood 5. To construct states (4.15) the functions 

were used. 
In the case of the focal neighbourhood !2 j ,  j = 2,4, the corresponding functions 

Iv, . c j ( y ) )  =e 

(4.17) 
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Here, as in the previous case, the integration is carried out along the oriented path on 
 EO, l o )  with the origin and the end in the points ;I E VI and rl E V,, j = 2,4, 
respectively. The functions r[(pl) satisfy the equations p1 (r[(p,)) = PI  and as the version 
of the tinctions $(y), the functions 
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were taken. 

whose validity follows from the definition of the functions d ( y )  and (4.8) for all 52,. 
Note. To derive formulae (4.15) and (4.17) we have used the identity ( o ( d ( y ) )  = (o, 

5. Quasi-classical spectral series of the Dirac operator corresponding to the family of 
invariant Lagrangian tori A2(w) with complex germ @(Az(w)) 

The results obtained in the previous section enable us to proceed to constructing the 
quasi-classical spectral series [qEN,,(q, h),   EN,&^)] of the Dirac operator corresponding 
to the family A2@) of type (4.3)-(4.5). Since A2(w) contains focal points, then (see 
Introduction) to construct the asymptotic solution as a whole (including the caustic and 
the region of a ‘shadow’) it is first necessary to find the asymptotic modulo O(fi’”) 
solutions Yi(q,h) of (1.3) in each region zq(S2j) of the configuration space Ri. Subsection 
5.1 is devoted to solution of this problem. Below we restrict ourselves to considering 
only the leading terms Gk(q,R) of the local asymptotics ‘UL(q,h) from which a multi- 
valued function wE(q,h) (defined everywhere in Ri) is matched in subsection 5.2. As a 
result, we construct a canonical operator with complex phase on the family A2(w). For a 
canonical operator to define a single-valued function wE(q, h)  it is necessary to impose some 
additional conditions. These conditions lead to quasi-classical quantization conditions for 
the family A’(@) and aTe considered in subsection 5.3. A series of asymptotic eigenfunctions 
QE,,,(q, a )  conshucted in this way Satisfies condition (1.5) and it is made up ofthe functions 
localized at R + 0 in the domain of ‘light’ zq(AZ(o)). 

5.1. Local asymptotics of the Dirac operator 

We begin with a review of some facts of the theory of the Weyl-ordered F i - I -  
(pseud0)differential operators. Let L = L(-%a,, q. h)  be a Weyl-ordered h-’-  
(pseud0)differential operator in the q-representation possessing a symbol L(pq q,  h), then 
the action of the i operator on the function q(q) is defined by the formula 

0 

0 

where n is a dimension of the vector q.  Introduce a direct and inverse h-I-Fourier 
transformation with respect to variables q i  

(5.1.2) 
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where k is the number of components of the set i. Then the Weyl-ordered operator 
L = L(-iha,, y,h) in a mixed y-representation, where y = (qI ,  pi) is given by 

~ - -  

(5.1.4) 

Allowing for equations (5.1.1)-(5.1.3) it is not difficult to show that the operator in the 
y-representation may be obtained from the operator L in the q-representation by a formal 
substitution -fiaqi + p i ,  q i  + *api, i.e. 

i(-fia,. y -5)  = F$,, ,U-fiaq, q ,5)Fpi4qi .  4-1 

- 

ic-sa,. y , h )  = L(-cia,,, p j . q / ,  ciapi). (5.1.5) 

Transition into a mixed y-representation enables one to construct a class of asymptotic 
solutions of (1.1) in the form of the h-’-Fourier transformation with respect to part variables 

@(q,h) = F;~~,*AY.w (5.1.6) 

where the function $&(y,h) is an asymptotic modulo O(E3”) solution of (1.1) in the y- 
representation 

I -  

[ik-iha,, y,h) - ~ ] h ~ y , h )  = 0 ( h 3 9 .  (5.1.7) 

Later on, function (5.1.6) describes a local asymptotic solution of (1.1) in the region of the 
configuration space Ri onto which the neighbourhood S2r c Az is projected. The Weyl- 
ordered operator f i ~  in (5.1.7) is obtained from the operator & according to rule (51.5). 
We analyse the operator I?D in some detail. 

Let Cartesian and curvilinear coordinates of configuration space Ifti be denoted by x = 
(x,), q = (4”). Ci, U = 1,2,3, respectively. Introduce three vectors e. = (e!, ri = 1,2,3) 
with components e: = ax,//aq”. Then, the Weyl-ordered Dirac operator I?D may be written 
in the q-representation as 

HD = I?o + hl?i 

I&, = - 5 f f ( e : e a  + p&) + &mc2 + eAo 

(5.1.8) 

(5.1.9) 
2 

- l C S O  HI = - E  e,,,, 
2 

(5.1.10) 

where & and (Y = (U,) are the Dirac matrices in the standard representation, go = 
iha/aq‘ - (e/c)A,,  e = -eo is the electron charge, (Ao, A,) are potentials of an external 
electromagnetic field. 

The main symbol of operator (5.1.8) is the Hermitian matrix of the form 

h ( p ,  q )  = c z P  + mmcz + eAo (5.1.1 1) 

where P = (PE) and P, = e:(p,+fA,). Matrix (5.1.1 l), as pointed out in the introduction, 
has two doubly degenerate eigenvalues 

, l(*)(p, q)  = eAo f & E = d w .  (5.1.12) 
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The eigenvectors corresponding to these can be combined into two 4 x 2-matrices & ( p ,  q )  
which, at solutions p = p ( r ) ,  q = q(r) of the Hamiltonian system (1.2), take the form 

V G Bagrov et a1 

(5.1.13) 

where y = &/mc*, p = $4 = :e,q', Matrices (5.1.13) satisfy the orthonormality and 
completeness relations 

In addition, it is not difficult to prove the following identities: 

col, m)n+ = *n,(p, m) + nr(d, m) 

d = (U, E4- 1 - Q (5.1.15) 
1 + Y-' 

where m is an arbitrary three-component vector. 

k = 1 , 2 .  (5.1.16) 

We now proceed to construct asymptotic solutions of (5.1.7), The solution is searched 
for in the class of functions 

@ ' E ( Y , ~ )  = @ E ( Y ~ ~ ~ ( Y ) ~ ~ Z ( Y ) , ~ )  (51.17) 

in the form of the following asymptotic expansion in powers of h 

where the functions q (y )  and rz(y) were defined in (3.2). Denote by Y," the space of 
the square-integrable scalar functions for which the following asymptotic estimations are 
fulfilled on w: 

Ay = 6(h'") 
(-ilia, + 6,) = 6@) 

A i y  = 6(fi'/') 
k = 1 , 2  
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where S(y, t) is defined in (3.4). The equality @ = 6(FP), a > 0, implies that for the 
operator f in the space Yi  the following condition folds true: I I@'p l l~~/ I l 'p l I~~ = O(A') V 'p E 

Yh, where II . l l ~ ~  = a. Then it is assumed that the twcxomponent spinors IF) 
in (5.1.18) may be represented as ji*)(y,fz) = u(r)'p(y,h), where p(y,h)  E Y," and the 
spinors u(r)  (u+(r)u(r) = 1) are to be determined. 

Introducetheoperator A$, = -ifta,-p,(r). In theclassoffunctions(5.1.17)~5.1.19), 
the action of the operator A$, can be conveniently represented in the form 

which, allowing for (3.5) and (5.1.19). enables one to give an asymptotic estimation for 
A$,. Now we expand the operator HD in a neighbourhood of the manifold Az = [ ( p ,  q )  : 
p = p ( s ) ,  q = q ( t ) )  in the Taylor power series over the operator AP, and Ay up to second- 
order terms. Then, equation (5.1.7) turns out to be equivalent to the set of conditions 

5 

2 0  
Here and below = j' + ti2, and the expression S k L ( r ) ,  k = 1,2, implies the kth term in 
@e Taylor power expansion over the operatgrs Ab, an{ Ay of the Weyl-ordered operator 
i = i ( - % a y ,  y , A )  with the main symbol i ( p y ,  y )  = L ( p ,  q )  in a neighbourhood of A2. 
The spectral parameter E in (51.21) is given as 

E = Eo + hEl + O(fzz) (5.1.23) 

where EO = L(*)I,,+). Substitute (5.1.18) and (5.1.23) into (5.1.21) and consider the 
expression at n-(r).  By combining the terms of order A', A i l 2 ,  and A, respectively, we 
obtain the following chain of conditions: 

where the operators Q, and Q, are of the form 

(5.1.25) 

(5.1.26) 
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Additionally, the condition 
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;iJ(E+)(y,h) = 0 k = 1,2 (5.1.27) 

is assumed to be fulfilled. Then allowing for (5.1.24)+.1.27) a similar treatment of the 
expression at nt(r) in the left-hand side of (5.1.21) results in the equation for the spinor 
0 

jet, 
E ( y , f i ) :  

(5.1.28) 

After further simplification, in view of (3.2). equation (5.1.28) takes the form of the Pauli- 
type equation: 

(51.29) 

Here, the operator ir) was defined in (3.10), g = det(&,b), where 
a Cartesian metric on 
'polarization' vector equal to 

= (%,e,,) is 
in curvilinear coordinates (9"); and B ( s )  : R: -+ R3 is the 

(5.1.30) 

In (5.1.30) E(T)  and H ( r )  are the electric and magnetic components of an external 
electromagnetic field. 

Assume that 

j ( t )  E ( y , f i )  = g(r)-1'4Iw7 r(y))u(r) (5.1.31) 

where u(s)  is a two-dimensional spinor which is to be defined. Then, taking into account 
(3.11), one obtains the following equation for u(r) 

(5.1.32) 

Finally, it should be noted that (5.1.27) follows from (3.9) and (5.1.31). Whence, 
allowing for (5.1.24), the validity of (5.1.22) is obtained. As a result, the task ofconstmcting 
the asymptotic solutions G ~ ( y , f i )  of (5.1.7) is reduced to solution of the ordinary linear 
differential equation (5.1.32) with respect to the variable rl (the variable r2 is considered as 
a parameter) with a subsequent substitution of the functions r = s ( y )  (3.2) into the solution 
obtained. 
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Now we write out an explicit form of functions (5.1.18). According to (5.1.24) we have 

n+(r) + gn-(r)(hl/’Q1 1 + h Q , ) ]  i r ’ ( y , f i )  

n 
Thus, solution (5.1.33) contains the two arbitrary spinors ? g ’ ( y ,  E ) ,  n = I ,  2, which can be 
found from the following (mod O p ) )  approximation. According to (5.1.31) the leading 
term of asymptotic (5.1.33) is 

0 

* E ( Y ,  h )  = [g(r)-”4n+(r)u(T)lu, T)llz=r(,,). (5.1.34) 

In conclusion it should be noted that if in case of scalar equations (e.g. the Schrodinger 
or Klein-Gordon equations) the asymptotic (mod 0 ( h 3 9 )  solution and its leading term 
coincide, then in the case of equations with a matrix Hamiltonian it does not occur, as 
is seen from (5.1.33) and (5.1.34). The fact that there are two arbitrary two-component 
spinors in the asymptotic (modO(h”’)) solution (5.1.33) is not accidental and reflects one 
of the characteristic features inherent to the matrix equations [8]. This condition essentially 
complicates the matching procedure of the local asymptotics (5.1.6) in an attempt to obtain 
an asymptotic ( m ~ d O ( l i ~ / ~ ) )  solution of (1.1) which is uniformity valid everywhere in R3 

8’ However, as will be seen below, to obtain the quasi-classical quantization conditions it is 
sufficient to restrict oneself to constructing only the leading term (5.1.34). 

5.2. Mmlov canonical operator on the family of Lagrangian manifolds with complex germ 
corresponding to he Dirac operator in axially symmetric extemalfield 

According to the general Maslov theory [3,6] in order to construct unified regular quasi- 
classical asymptotics (defined in the whole configuration space) it is necessary to build up 
a special operator which, in the case of incomplete-dimensional Lagrangian manifolds, is 
known as a canonical operator with complex phase. 

Here, we shall restrict ourselves to a special class of invariant Lagrangian manifolds 
A2(w) introduced in section 4. In this case the procedure for constructing the canonical 
operator is essentially simplified and will be, in fact, reduced to the well known construction 
of the canonical operator with real phase on the closed curve A’(Eo.10) [3,9]. We show 
below how this can be done. 

of the 
closed curve A’(w),  w = (EO, ZO), i.e. a set of Cm-functions ej(r1) such that 

Define a suitable partition of unity submitted to the coverage [!+I. j = 

4 

suppej(rl) c v j , C e j ( r I )  = I for all rl. 
j=1 

The two arbitrary neighbourhoods 9, and Vi2 possessing a non-empty intersection are chosen 
from the set [ V,]. Let the neighbourhood V,, be singular and b2 non-singular. The Maslov 
index of the pair of neighbourhoods (Vj,, 9) is, by definition, the number 

(5.2.1) 
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where, in addition, an assumption is made that y (Vj , ,  Vh) = - y ( b , ,  5,). Let 1 ( ; 1 ,  51) 

denote the path on A’(o) oriented counterclockwise along which the integration is carried 
out in (4.15) and (4.17). Let VI,, . . , be an ordered chain of neighbourhoods in which 
the path 1( ;1 ,  q) lies with 
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E &, TI E 5. Then, the value equal to 

v j [ i G l ,  r l ) ~  = Y(V], v,) + ... + ~(5-I ,  5)  (5.2.2) 

has the meaning of the Maslov index of the above chain. 
Let F(r )  3 F(p(r), TI) : W: -+ C4 denote a smooth finite vector function where the 

function p(s) was defined in (4.8). Then, in view of the note at the end of section 4 we 
shall have 

Introduce into consideration the local precanonical operator K A Z ( , ) ( Q ~ )  which acts on 

(i) in the case of non-singular neighbourhoods Qh, j z  = 1.3 

the functions F(T): 

(ii) in the case of singular neighbourhoods S2,, , j ,  = 2.4 

(5.2.4) 

where the functions Iu, r f ( q l ) )  and I U ,  rf(pl)) were defined in (4.15) and (4.17), 
respectively. The pre-canonical operators introduced in this way satisfy the following 
important property: for any pair of the neighbourhoods Qj, and Sl,? in their overlap region 
the following equality is valid 

(KA2cw)(Qj~)[F(r)l)(q) = (KA~cw)(Qj2j,)[3(t)l)(q) + Of i )  4 E % Q j ,  nnqQj%. 

(5.25) 

The proof of this statement is based on the stationary phase method and given in appendix 1. 
By means of the operators K,jic,)(Qj) and a partition of unity ej(r1) submitted to the 

neighbourhoods 5, j = I,*, we shall build up the operator KAqW) whose action on the 
functions F(r)  is defined by the rule 

- 

( ~ n z ( o ) ~ ~ ( r ) ~ ) ( q )  = CWAW(Q~~~)[~~(G )+(Z)IM). (5.2.6) 

The operator Khqw) is called the canonical operator on the family [A2(@), r 3 ( A 2 ( o ) ) ] .  In 
view of (5.2.5) it can be shown that the canonical operator with an accuracy of order O(Fi), 
first, does not depend on the manner of partition of unity (e j ]  with the fixed atlas ( Q j ) ,  and, 
secondly, does not depend on the choice of the canonical atlas itself on A’@). 

i 



Note. It should be emphasized that in (5.2.8) the parameter r1 takes on the values on 
the section .“I < rl < .“I + q. Whence, the following restriction on the choice of the 

It is curious to note that in (5.2.8) the construction of the Maslov canonical operator 
with real phase K , I ( ~ )  on the family of closed curves is explicity present [3,9]. This 
fact is likely to be due to a special choice of the class of invariant Lagrangian tori A2(o). 

Now, if we avail ourselves of the familier property of the &function: S(x - ~ ( 2 ) )  = 
s(t - t ( x ) ) / l N ( x ) ) l ,  where the function t ( x )  obeys the condition x ( f ( x ) )  = x and take 
that 

=gql(rt) = ny,[l(;l, S)I (5.2.9) 

wgpl(s )  = ~yj , [&,r1)1 (5.2.1 0) 

functions r1 il (41) and rF(p1) is obtained ;I < $(PI) < ;I + E ,  < &qI) 6 +TI. 

then, it is not difficult to obtain the following equivalent representation for (5.2.8): 

(5.2.11) 
Consider the action of the canonical operator KA~(,) (5.2.11) on the function 3 ( s )  = 

( g ( ~ ~ ) ) - ” ~ n + ( r ) v ( r ) ,  where i7+(r) and v(r )  were defined in (5.1.13) and (5.1.32). 
respectively. Assume in this case 

Then, for function (5.1.12) the following properties are true: 
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0 

(1) The function W E ( 4 . h )  is localized in the classically allowed region, i.e. in the 
domain of the projection of A2(o)  onto configuration space R:. In particular, it decays 
exponentially with respect to the variable qz and has the form of the Gaussian wavepacket 
centred at the point q2 = 0. The asymptotic behaviour of the function \ y E ( q ,  h )  near the 
caustic and in the region of ‘shadow’ is presented in appendix 2. 

(2) At the points q E n9(Az(o)) (the region of ‘light’) the function W € ( q , R )  behaves 
as follows. 

(i) If q = {(q~(r~),qz,(p), 51 E suppej,. 71 $ suppej,}, then the function W E ( q , h )  is 
the combination of the functions (5.2.3) and, according to (5.1.6) and (5.1.34). describes 
the leading term of the local asymptotic solution of the Dirac equation in the region of the 
configuration space onto which the non-singular neighbourhoods S2j2 are projected. 

(ii)Ifq = { ( q 1 ( q ) , q 2 , ( p ) , q  ~ s u p p e j , , ? ~  ~suppej,},thenthefunctions W € ( q , h )  i s a  
combination of the functions (5.2.4) and describes the leading term of the local asymptotic 
solution in the region of the projection n9(S2j,) of the focal neighbourhoods a,,. 

(iii) If q E n9(C2j,) n ir,(s2,), then the function ; & , E )  contains, at first sight, both 
types of functions (5.2.3) and (5.2.4). However, according to (52.5). they merge into each 
other (at least with an accuracy to order O(fi))  in the transition region where Sj, and nj2 
overlap. If one allows for the fact that 

0 

0 

0 

the canonical operator Knyo, ensures a correct matching of the local asymptotics. 

Note. Independence of the metric determinant g = det(q,b) on the parameter 52 in 
(5.2.12) follows from the cyclicity condition of the Hamiltonian function (5.1.12) with 
respect to the variable (p and from (4.8). 

5.3. Quasi-classical quantivuion conditions offamily [A2@), r 3 ( A Z ( o ) ) ]  

Formula (5.2.12) obtained in the previous subsection for the function W E ( q ,  h), and which 
gives a locally matched asymptotic solution of the Dirac equation, does not depend (with 
an accuracy to order O(h)) on the choice of the canonical atlas on A2(w),  the choice of 
the representation in the region of the neighbourhoods intersection, or the partition of unity. 
However, as is seen from (5.2.11), it depends on the choice of the initial point ;I on the 
closed curve A’(@). It is natural to require independence of construction (5.2.12) on the 
choice of the ‘time origin’ ;I, which is automatically fulfilled on condition of T,-periodicity 
of the function W E ( q ,  q , h )  with respect to the variable 51: 

0 

0 0 

w E ( q , ? l  + r I , h ) = W € ( q , ? l , h ) .  (5.3.1) 

Also, the function \ Y E @ .  51, h )  should satisfy the 2ir-periodicity condition with respect to 
the variable (p mod 2n 

0 

0 

W € ( q l . q Z .  (p + 2n. n , h )  = W d q ,  ?],E). (5.3.2) 
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Under these conditions the canonical operator Kn+,) defines the single-valued function 

'€'yE(q, FI). In addition, from (5.3.1) and (5.3.2) the quasi-classical quantization conditions 
of the parameters o = (Eo, Io) of the family [Az(o), r3(A2(o) ) ]  result. 

The following commentary proceeds to derive these conditions. 
As follows from (4.8) and (5.1.30). the dependence of the polarization vector #(r) on 

the arguments r1 and rz is generally such that B(r)  = &rp(r), rl). Also, the 2 ~ -  and 
Ti-periodicity conditions are fulfilled: &rp(r)+2rr, 51) = &rp(r), 51). d(rp(r). rl + T I )  = 
&(p(r). rl). Therefore, the vector function E?(p(r), 51) behaves as a doubly periodic 
function with respect to the variables rp(r) and r,. Later on it will be assumed that (5.1.32) 
permits a set of two linearly independent Floquet solutions ut(r) = ;t(rp(c), T I ) ,  t = ?cl, 
such that 

e 

;,(rp(r) + 2n, 51) = ;t(rp(rL CI) 

i$((p(r), T I  + TI) = e-'"fTIiic((p(T), T I )  

(5.3.3) 

(5.3.4) I"; = 0, 

(5.3.5) 

Note. The above assumption for the vector #(r)  is also valid for the mahix n+(t) = 

The phase increment of the functions are left to be found while 
going around the closed path A'(@) counterclockwise. According to (5.2.2) we have 
yj[ l (s l .r l  + TI)] = y j [ l (g l , r~ ) ]  + y[A ' (o)] .  Since in our case y [h ' (w ) ]  = 2, from 
(5.2.9) and (5.2.10) it follows that 

f i + ~ ~ ) ,  51). 
and 

Now, it is not difficult to obtain the conditions when (5.3.1) and (5.3.2) are valid. Allowing 
for the explicit form of the function @&, r i . h )  and (5.3.3), relationship (5.3.2) leads to 
quantization of the momentum integral 10: 

0 

10 =bl  I = f l ,  *2,. . .. (5.3.7) 

Making use of (4.14), (5.3.4) and (5.3.6), relationship (5.3.1) results in the following 
condition 

~ T I p l ( r , E ~ . l ~ ) q i ( f , E ~ , Z ~ ) d t + b ~ ~ ~ E ~  - 5 2 1 ( v + f ) - o ; j = 2 x h ( n + ~ ) + O ( ~ * )  

(5.3.8) 

where n = &1,12, .  ..,U = 0, 1.2,. . . , f = f l .  Equation (5.3.8) obviously holds, if the 
parameters EO and El are defined from the conditions 

(5.3.9) 

El = 52i(!J + i) + 0;. (5.3.10) 
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From (5.3.9) and (5.3.10) together with (5.3.4) one obtains, with an accuracy to O@), a 
spectral sequence of the energy levels 

EN.[@) = En.i.u.<(fi) = + ~ E ~ ~ / , , , , @ )  + O(h2). (5.3.11) 

The quantum numbers I = I @ ) ,  n = n(h)  and the parameter h should be tied by the 
conditions: 
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In this case the series of eigenvalues (5.3.11) in  the limit at h --t 0 corresponds to a 
relativistic electron moving along the classical trajectory confined to the invariant torus 
A*(E;', Z;') with given values of energy E;' and momentum I;I. 

It can be shown also that in expanding inh with an accuracy to O(h2), conditions (5.3.9) 
and (5.3.10) are equivalent to the quantization condition of the spectral parameter E of the 
Bohr-Sommerfeld type: 

(5.3.12) 

where E = E o + R E I  +O@'). Equation (5.3.12) represents the basic result obtained in this 
subsection. 

We should point out the presence of the half-integer addition f in the quantization rule 
(5.3.12). Its appearance is due to the occurrence of the non-trivial quantity y[A'(o)] = 
indA'(o)-the Maslov index for the closed curve A'(o). It is well known that in the 
case of the family of complete-dimensional invariant tori A" the quantization conditions 
contain the Maslov indices of oriented closed curves forming a basis of one-cycles on 
the manifold A" [8,9] (see also [2,18,191 interpreting the Maslov index). However, 
unlike the complete-dimensional case the Maslov index may be formally excluded from 
the quantization conditions of the family of incomplete-dimensional tori A', k < n. In 
support of this statement consider an example. In (5.3.12) the characteristic Floquet index 
s21 and the main quantum number n(h) are defined in the following way: a, = b,-2n/T,, 
n(h)  = Z(h) + U. Then (5.3.12) is rewritten as 

(5.3.13) 

where, unlike (4.14), the characteristic Floquet index 81 is now normalized by the condition 

(5.3.14) 

So, let conditions (5.3.7) and (5.3.9) be fulfilled. Then, at each fixed A the 
family of invariant Lagrangian ton A2(o) with complex germ r3(A2(o)) is quantized, 
i.e. there appears a discrete set of geometric objects [AZ(on.[), r3(A*(on,f))J,  where 
on,, = (EC/(h),hI(h)). On each of them the canonical operator KayuB,,) with complex 
phase is defined. Making use of them according to (5.2.12) a set of asymptotic 
eigenfunctions q~,,,,(q, h)  =  WE",,",^ (q ,h)  corresponding to the series of eigenvalues 

argz(rl+ T I )  = argz(r1) + 81~1 - 2 ~ .  

0 0 
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(5.3.11) is constructed. Thus, the quasi-classical spectral series of the Dirac operator 
[ & ~ ~ , , ( q .  f t ) ,  E N J ( ~ ) ]  corresponding to the family [AZ(wn.1), r 3 ( A Z ( m n , ~ ) ) ]  is obtained. 

From property (1) of subsection 5.2 it follows that each function WEn,, ,v ,<(q,h)  is 
localized in the neighbourhood of the toms projection Az(a,J on IR;. Also, we should 
make sure that, at a suitable choice of the normalization factor NO, they satisfy (1.5) and, 
in this way, form a complete orthonormal set of states. Omitting unessential details, only 
the key features of the proof will be given. It is not difficult to check that the functions 
E&. 51) (4.16) obey the relation 

0 

/ dqz ~+Iz. 5 1 ) W q z .  TI) = 6 ~ ( r t h ) ’ / ~  (5.3.15) 

and make up a complete set. The latter follows essentially from the completeness of 
the orthonormal set of the Hermite functions U,(:) = c, ex~(-6~/2)H,(6). Using the 
stationary phase approximation (5.3.5) and (5.3.15) one obtains 

(5.3.16) 
Since 

the expression in the curly brackets in the integrand is identically equal to unity. Also, 
when the quantum numbers coincide I = I’, v = v’, ( = C’ we have 

(5.3.17) 

But from (5.3.9) follows a E l ( h ) / a @ n @ ) )  = 2x/T1.  The proof of this relationship is 
given in [7]. 

Thus, equation (5.3.16) takes the form 

6. Quasi-elassical spectral series of the Dirac operator in specilk con6guration fields 

In this section we shall consider two examples of the threedegree-of-freedom relativistic 
Hamiltonian systems allowing families of two-dimensional invariant ton. The first one 
deals with a completely integrable case of the motion of an electron in the Coulomb field. 
Since the eigenvalues problem for the Dirac operator in the Coulomb field is solved exactly, 
with this example, by comparing quantum numbers, it is possible to separate that part of 
the exact spectrum to which an electron motion along the two-dimensional Lagrangian tori 
corresponds. 

The second example refers to the case of a partially integrable system which describes 
the motion of a relativistic electron in an electromagnetic field with axial symmetry. The 
above system permits a family of two-dimensional invariant ton surrounding closed orbits 
of stable periodic motions. 
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6.1. Quantization of invariant mo-dimensional Lagrangian tori in Coulomb field 

In the Coulomb field with potential Ao = o/p, o = Zeo the Hamiltonian is 

~ ( + ) ( p ,  q)  = -- + c(p: + P pe + P sin @pV + m c 

V G Bagrov et a1 

me0 -2 2 -2 ’ -2 2 2 2 1/2 = + E ,  (6.1.1) 
P P 

It is well known that in satisfying 

A > O  B z O  C > O  B Z z A C  (6.1.2) 

where 

(6.1.3) 

the Hamiltonian system (1.2) permits a family of invariant two-dimensional tori. They lie 
in the coordinate plane 7 = [ ( p ,  q )  : pe = 0.0 = n/Z} and have the form of (4.3)-(4.5) 
where 

.eo A’(E0, ZO) = [ (pp.  p )  : -- + c(p;  + P - ~ I ;  + m2c2)1/2 = EO 
P 

The projection of AZ(E,,, l o )  onto configuration space defining the classically allowed region 
lies in the equatorial plane and forms a ring bounded by two caustic circles 

Si(Eo,  Zo) = [ ( p ,  0, 9) : P = Ra(Eo, l o ) ,  0 = ~ / 2 ,  Y, E [O, 2 ~ 1 1  (6.1.5) 

where RI are the classical turning points (b(R+) = 0): 

(6.1.6) 

Further, it is convenient to express the energy EO in terms of adiabatic invariants which, 
in our case, are 

Then, we obtain 

E ~ ( I ~ ,  zV) = mcz 
+ c2 ( Ip  + JGq 

(6.1.7) 

- I / Z  

(6.1.8) 

Performing the differentiations with respect to lp and Zv, one can find the radial and orbital 
frequencies, respectively: 

up = aEo/azp = A3/z/(rueomz) 

wv = aEo/azv = Z~W~/A. 
(6.1.9) 

(6.1.10) 
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According to quantization conditions (5.3.7) and (5.3.9) we should take adiabatic invariants 
(6.1.7) to be given by 

zq = hl@)  I ,  = h ( n @ )  + 4). (6.1.1 1) 

Whence, due to (6.1.8). we obtain the expression for the leading term of the energy spectrum 

= Eo@@@) + f),hl@)l 

(6.1.12) 

We now calculate the energy correction E,$",<@) defined in (5.3.10). In our case the 
reduced system in variations (4.1 1) has the form 

Using (4.12) one can obtain the expression for the Floquet solution z ( q )  

d q )  e E R .  

(6.1.13) 

(6.1.14) 

For the characteristic Floquet index which can be defined from (4.13) and (4.14) we have 

Here TI is the rotational period along the closed curve A'(E0, Zo) equal to 

(6.1.15) 

(6.1.16) 

Define now the frequencies io;, f = k l ,  due to the interaction of the electron spin 
with the external field. In the Coulomb field polarization vector (5.1.30) is equal to 
B ( q )  = (0.0, B(rl)) ,  where B ( q )  = (ue0c~Zo/[2~~(1 + y - ' ) p 3 ( r ~ ) I .  In this case (5.1.32) 
permits a set of two Floquet solutions 

where 
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From this we obtain the expression for the characteristic Flcquet index 

V G Bagrov et a1 

(6.1.18) 

After substituting (6.1.15) and (6.1.18) into (5.3.10) we have E ~ ~ ~ , u , t @ )  = wp{v + i(1 + 
F)) - (</2)wp. Hence, using (53.11) and (6.1.12) we find the following expression (with 
an accuracy to O(h2)) for the quasi-classical energy specmm 

& , I , ~ , ~ ( W  = Eo[Wn(fr) + - t)LhI[(fr) + IJ + + <)I1 + W2) 
1-112 r 

(6.1.19) 

The formula obtained allows us to establish a correspondence between the quantum 
numbers of the exact and quasi-classical energy spectra. Namely, let n p  and nr denote, 
respectively, the radial and orbital quantum numbers entering the explicit formula for the 
hydrogen-like atom spectrum. Then, assuming the condition no - I/h, nl - I /h  we have 

(6.1.20) 

Thus, as should have been expected, at h -+ 0 a highly excited spectral range both 
with respect to orbital y and radial np quantum numbers corresponds to the motion of 
a relativistic electron along the quantized two-dimensional invariant tori in the Coulomb 
field. However, it is interesting to note, that despite the fact that (6,l.l9) was obtained 
on the assumption of great n(h) - l / h ,  nevertheless, taking formally h ( h )  = O(h) (i.e. 
considering n to be small), we obtain the quasi-classical spectral series corresponding to the 
motion of an electron along an equilibrium circle [7]. 

6.2. Asymptotic series of eigenvalues for the Dirac operator in axially symmetric magnetic 
field with weak focusing corresponding to the motion of electron along two-dimensional 
Lagrangian tori surrounding equilibrium orbits 

Consider the motion of a relativistic electron in the inhomogeneous axially symmetric 
magnetic field whose potentials in cylindrical coordinates ( p ,  (0, z )  take on the values 

d e i  

c2 ( h { n ( h ) + ~ ( l - < ) } + ~ h ’ { l ( h ) + ” + ~ ( l + ~ ) ~ - ~  

+ O(hz). 

n p  = n+ ;(I - 0 , n I  = I +  U. 

where q is the focusing parameter, 0 < q < 1, and b = constant. The classical Hamiltonian 
is 
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and, as follows from Hamiltonian system (1.2). in the region of phase space 7 = ( ( p .  q )  : 
pz = z = 01, determines a family of invariant two-dimensional Lagrangian manifolds 
described by a set of the canonical equations 

C 2  

Ea 
P =  -PP (6.2.3) 

(6.2.4) 

with the initial data p(0) = po, pp(0) = pPo, p(0) = q(mod2n). Here 

b 
and H(p) = - p - I - - - - - .  eo p2* 

T -  c 2 - q  Pq 

is the magnitude of the magnetic field at the point p .  Equations (6.2.3) and (6.2.4) can be 
integrated by quadratures if we make use of the energy integral Ei /c2  = mZc2+p:+p-ZPi.  
As a result, we obtain 

(6.2.5) 

where the function p ( q )  is implicity defined by the relationship 

The period T, of the function p ( q )  is given by 

where Rk(E0, I )  are the roots of the equation p p ( p )  = 0 at the given values of Eo and I. 
In a general case system in variations (4.11) corresponding to the family of Lagrangian 

ton (6.2.3). (6.2.4) failed to be integrated. We shall restrict ourselves to considering the 
Lagrangian ton surrounding equilibrium closed orbits of system (6.2.3), (6.2.4). and lying 
in a rather small neighbourhood of the latter. In this case all the calculations are W e d  
out in an explicit form. 

As follows from (6.2.3) and (6.2.4) the path of the electron in the plane x y  is described 
by the equations 

(6.2.6) 

(6.2.7) 2.2-  2 2 P 2 f P V  - c s  
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where cp is the velocity of an electron motion. Introduce the following notation 

V G Bagrov et ai 

(6.2.8) 

where 

Here, 00 stands for the revolution frequency of an electron along the equilibrium circle f R ,  
whose radius R will be defined below. The constant E characterizes the amount of small 
deviations of the path (6.2.6), (6.27) away from I R ,  and below it will be considered to be 
a dimensionless expansion parameter. 

The solution of (6.2.6) will be searched for as a power series in & 

p ( r d  = R + E P I ( ~ ~ ) + E ’ ~ ~ ( ~ , ) + O ( & ~ ) .  (6.2.9) 

Inserting (6.2.9) into (6.2.6) we obtain, with an accuracy to order O(e3), the following 
results 

C p = % R  (6.2.10) 

p(rl)  = R 1 + Ecose + -3+q ms2e + + A sine + B cose . (6.2.11) 

Here, 0 = OJAq -a, where the angle cu is assumed to be equal to 

I I 1 6  6 11 
cu = cos-’ (h - R , / & L q )  (6.212) 

and A and B are the integration constants, which are defined by choosing initial conditions 
and, in our case, are 

A = - sincu (% cos’a + 
6 2q + ’> 

B = - c o s c u ( ~ c o s ’ u - -  2 ’> (6.2.13) 

To define the value of the classical energy EO we shall use (6.2.7), (6.2.8) and (6.2.10). 
Whence, we obtain 

E~ = Jm2c4 + ~ ; H Z ( R ) R Z .  (6.2.14) 

In turn, from (6.2.7), (6.2.10) and (6.2.1 1). follows the expression for the function @(rl)  

+(SI) =q { 1 -ECOse+E~[(2-$)Cos2e - (1 - %) - Asin.9 - Bcoso + 0 ( & 3 ) .  

(6.2.15) 
I1 
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In the same way, allowing the angular momentum of an electron in the first equation of 
(6.2.4) to be equal to 2 = 20 t 21 where 21 = O(&') and making use of (6.2.10) one obtains 

1 - q  2 C 2 I I  - _  - - W O 2  
%RZ 

E .  

(6.2.16) 

(6.2.17) 

Now. consider the expression for the leading term of the energy spectrum E:;@). 
Inserting (6.2.1 I )  into (5.3.9) we obtain, with an accuracy to O(E~) ,  the following condition 

k . $ f i ~ c ~ R ~  = h(n t f ) .  (6.2.18) 

By comparing (6.2.17) and (6.2.18) we find 

F - f i , K &  + 4,. (6.2.19) 

From (5.3.7) and (6.2.19) it follows that 20 takes on the quantized values 

Io(% 1 )  = hl + a G ( n  + 4). (6.2.20) 

On the other hand, due to (6.2.16) and (6.2.20) we obtain the quantization rule of the radius 
R(n, I )  of the equilibrium circle I,+ As a result, we have 

E$@) = ,/m2c4 + s 2 ( R ( n ,  l ) ) R Z ( n ,  l )  

where the integer parameters 1 = l ( h )  and n = n f i )  obey the conditions 

(6.2.21) 

limfil(fi) = I ,I% ~ A o j ( f i )  = EO 
h+O 

In taking the second step of our considerations we wish to calculate the value of the 
Floquet index QI (see (4.13). (4.14)). For this purpose, we consider (4.11) for the vector 

In our case 

We can now expand the matrix G(TI) in powers of E and restrict ourselves to the terms 
of order c2. To construct the Floquet solution which satisfies (6.2.22) and (4.12) with 
an accuracy to order O(s3) we apply the perturbation theory. Finally, after simple but 
cumbersome calculations we arrive at the following result 

(6.2.23) 
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In order to determine the values of o‘( one needs to turn to (5.1.32). In the axially 
symmetric magnetic field with potentials (62.1). polarization vector (5.1.30) is equal to 

and (5.1.32) is the linear Hamiltonian system with TI-periodic coefficients. The Floquet 
solutions of this system possess the following characteristic indices: 

(6.2.24) 

Whence, with an accuracy to O(&3), we have 

(6.2.25) 

By summing up the results obtained above and allowing for the equality 00 = aEo/aZo 
(which follows from (6.2.14) and (6.2.16)) we obtain the expression for the quasi-classical 
energy spectrum 

r = 5w + 0(&3) c = & I .  

r 

+ 0 ( E 3 )  +OW) (6.2.26) 

where R(n, 1 + </2) R(Z& 1 + 5/2)). As in the previous example, putting in (6.2.26) 
formally hn(h) = Om) we obtain the series of energy levels of an electron moving along 
an equilibrium orbit [71. 
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Appendix 1 

To prove (5.2.5) we make use of the stationary phase method. Consider a rapidly oscillating 
integral of the form 

I(h-I) = ‘p(w,x)exp (Al.]) s 
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where w are parameters. Let the function S(w. x )  possess only one non-degenerate critical 
point xo = XO(O),  i.e. S,(xo) = 0, S,(xo) # 0. Then, there occurs the following expansion 
of the integral (Al.l) at h -s 0 

Now, consider the integrand in the right-hand side of (5.2.3) and separate out the rapidly 
oscillating part of the exponent in it: Taking into account the condition Aq2 = qz-qZ(r) = 
q2 = 0(h1/’) and the identity pI(r:(pI)) = PI rewrite (5.2.3) as 

where 

Tnus, the coordinates q1 and 9 in (Al.3) stand for the parameters. The s ta t ion9 phase point 
is found from the condition S,,(pl ,q) = 0. Whence, we obtain q1 = q l ( r F ( p l ) ) .  In the 
overlap region y, n V,, this equation has a unique solution pl = pI (ql), which does define 
the desired stationary point. It should be noted that the equality r/’(pl)lp,,p,(p,) = rF(ql) 
is valid for the functions r / ( p l )  and rF(ql) in the region !$> n V,. Allowing for t h i s  for 
the stationary point we have 

(A1.4) 

(A1.5) 

Applying formula (A1.2) to integral (A1.3) and allowing for (A1.4) and (A1.5) we obtain 

41 Sptp,(p~(ql) ,q)  = --&a)). 
PI 

( K ( Q h ) [ f l ) ( q )  + O(h) (A1.6) 

where by definition 

PI 
By direct checking it is not difficult to see the validity of the following equality: 

rl E 9, n y2. 41 
f i $ ( ; ~ ,  q ) l  = y j , [ l @ ~ ,  TI)] + inerdex-(q) (A1.7) 

PI 
Equation (5.2.5) immediately follows from the latter and (A1.6). 
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Appendix 2 

We are interested in the asymptotic behaviour of the wavefunctions W E ( q , h )  at h --t 0 
in a small domain of the caustic rr,(Z) c R: formed, in our case, from the points 
{qI(r,+) = R*.qz = 0. (0 E [O, 2x11, where ql(r:) = 0. Choose the partition of unity 
so that 

V G Bagrov et a1 

0 

suppez(~I, E) = [r: - e ,  T,+ + E ]  
(A2.1) 

where E is a small parameter of order 0 ( h 1 f 6 ) .  For the sake of simplicity we assume 
et = (ez.ed), T: = ( T : , T ; ) .  Then, the function ; i E ( q , f i )  at fi + o takes the form 
(equation (5.3.1) is assumed to be fulfilled) 

SUppY(Ti,E)=[t;-&,T;+&] 

(A2.2) 

At q 1  near to q l ( r / )  the main contribution into the asymptotic behaviour of functions (A2.2) 
is ma& by the two last integrals Jt. Let us analyse their asymptotic at h -+ 0. By changing 
to the new variable U = (TI - T:)/&' one obtains 

Consider the region of configuration space containing the caustic zq(Z) and consisting 
of the points 

V:[ irq(x) ]  = ((4) : 41 - 4 i ( T / )  = o(h2"),qz = o(h1/2), (0 E io, 2x1). (A2.4) 

Expand expression (A2.3) in powers of the parameter &' = O(h"3). Then, at points (A2.4) 
we have 

Jr = E Z e t ( T / ) m @ u ( T [ ,  42. (0) 

(A2.5) 
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By making use of the integral representation of the Airy function 
m 

Ai(x)  = / d6 exp iQx + e3/3) 27r -m 

and the equality e,(r:) = 1 one obtains: 

where Z, = ~ ~ ( r ~ ) / ( - ~ p ~ ( r ~ ) q ~ ( r ~ ) ) ’ / ~ .  Thus. in the neighbourhood of the caustic 
V;[n,(Z)] the leading term of asymptotic (A2.6) has the order O(FZ-’/~), which implies a 
significant amplitude growth of the solution q E ( q ,  h )  at these points at h + 0. 

Consider now the region of the shadow of configuration space formed by the points 

w,’ = ((4) : 41 - 41(t:) = 0(f iU) ,q2  = O ( h 9 .  v E LO, 2x11 (A2.7) 

where a < and ql - ql(r/) + 0. We shall show that in the region W j  the function 

q E ( q , h )  is an asymptotic zero. As in the previous case the behaviour of the function 
WE(4.h) at points (A2.7) is governed by the integrals J t .  Make the change of variables 
U = (rl - 4 ) / ~ 3  and rewrite in the form 

0 

0 

0 

where 

and 

6” , (u ,  4 2 ,  r p , ~  = q(r: + E ~ ~ G ~ G G w ~ /  + E3u, 42, rp) 

x exp I lfr’+”” pl(t)dql(t)+[pl(r: + z 3 u )  -p~(r : )  -PI (~ : )E% 

x ( q l - q 1 ( r : ) ) + ~ 1 ( r : + ~ ~ ~ ) [ q 1 ( ~ : ) - q ~ ( ~ : + ~ ~ ~ ) 1  . (A2. IO) 

Expanding function (A2.10) in an asymptotic series in c3,  we find that the leading term 
of the expansion is of the order O(1). In view of the condition & I u = j . ~ / E s  = 0 (which 
immediately follows from (A2.1)) and the function 6” being finite, the integration limits in 
(A2.8) may be replaced by *w. Since in the region (A2.7) integrals (A2.8) do not have 
critical points, and function (A2.10) is regular with respect to the variable U ,  then, according 
to the theory of asymptotic estimations of rapidly oscillating integrals one obtains 

Jc = O(hm). (A2.11) 

I 
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